Commissural synapses, but not mossy fiber synapses, in hippocampal field CA3 exhibit associative long-term potentiation and depression.

نویسندگان

  • S Chattarji
  • P K Stanton
  • T J Sejnowski
چکیده

When CA3 commissural afferents received low-frequency (weak) stimuli synchronized with a train of mossy fiber bursts (strong), associative long-term potentiation (LTP) was induced at mixed commissural and associational synapses on hippocampal CA3 pyramidal cells in vitro. In contrast, a weak mossy fiber input did not potentiate when given in phase with commissural/associational bursts. Furthermore, commissural/associational synapses receiving low-frequency stimuli out-of-phase with strong rhythmic mossy fiber input showed associative long-term depression (LTD), whereas mossy fiber synaptic strengths were not depressed when they received weak inputs out-of-phase with a strong commissural/associational input. Thus, both associative LTP and associative LTD can be induced at commissural/associational synapses, but not at mossy fiber synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning-Facilitated Synaptic Plasticity at CA3 Mossy Fiber and Commissural–Associational Synapses Reveals Different Roles in Information Processing

Subregion-dependent differences in the role of the hippocampus in information processing exist. Recently, it has emerged that a special relationship exists between the expression of persistent forms of synaptic plasticity in hippocampal subregions and the encoding of different types of spatial information. Little is known about this type of information processing at CA3 synapses. We report that...

متن کامل

Differentiation in the protein synthesis-dependency of persistent synaptic plasticity in mossy fiber and associational/commissural CA3 synapses in vivo

Long-term potentiation (LTP) and long-term depression (LTD) are two mechanisms involved in the long-term storage of information in hippocampal synapses. In the hippocampal CA1 region, the late phases of LTP and LTD are protein-synthesis dependent. In the dentate gyrus, late-LTP but not LTD requires protein synthesis. The protein synthesis-dependency of persistent plasticity at CA3 synapses has ...

متن کامل

Frequency-dependent associative long-term potentiation at the hippocampal mossy fiber-CA3 synapse.

The mossy fiber-CA3 synapse displays an N-methyl-D-aspartate-receptor-independent mu-opioid-receptor-dependent form of long-term potentiation (LTP) that is thought not to display cooperativity or associativity with coactive afferents. However, because mossy fiber LTP requires repetitive synaptic activity for its induction, we reevaluated cooperativity and associativity at this synapse by using ...

متن کامل

Spike Train Timing-Dependent Associative Modification of Hippocampal CA3 Recurrent Synapses by Mossy Fibers

In the CA3 region of the hippocampus, extensive recurrent associational/commissural (A/C) connections made by pyramidal cells may function as a network for associative memory storage and recall. We here report that long-term potentiation (LTP) at the A/C synapses can be induced by association of brief spike trains in mossy fibers (MFs) from the dentate gyrus and A/C fibers. This LTP not only re...

متن کامل

Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus.

Mossy fiber synapses form the major excitatory input into the autoassociative network of pyramidal cells in the CA3 area of the hippocampus. Here we demonstrate that at the mossy fiber synapses, glutamate and gamma-aminobutyric acid (GABA) act as autaptic and heterosynaptic presynaptic inhibitory transmitters through metabotropic glutamate receptors (mGluRs) and GABAB receptors, respectively. B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 495 1  شماره 

صفحات  -

تاریخ انتشار 1989